CLASS 11 | PHYSICS

(C)

CHAPTER-7 | Gravitation

QUIZ PART-03

1. The gravitational potential energy of a body of mass m at distance r from the Earth's center is:

A. +GMm/r

B. -GMm/r

C. -GM/r

D. GM/r

(B)

Explanation: By convention, potential energy is zero at infinity, so at distance r it is U = -GMm/r.

2. The work done in bringing a body of mass m from infinity to distance r from Earth's center is:

A. Zero

C. -GMm/r

B. GMm/r

D. GM/r² (C)

Explanation: Work done = Change in potential energy = -GMm/r.

3. For a small height h above Earth's surface, the change in potential energy is approximately:

A. mgRe

B. mgh

C. GMm/Re

D.-mgh (B)

Explanation: Exact expression is $\Delta U =$ GMmh/[Re(Re+h)]. For h << Re, it reduces to mgh.

4. Escape velocity is:

A. Minimum speed required to stay in orbit B. Minimum velocity to escape Earth's atmosphere

C. Minimum velocity needed to reach infinity without returning

D. Average orbital speed of satellites

Explanation: Escape velocity is the speed at which total energy (kinetic + potential) becomes zero at infinity.

5. The escape velocity from Earth's surface is:

A. $\sqrt{(gRe)}$ D o w n | B. $\sqrt{(2gRe)}$ | S

C. $\sqrt{(GM/Re^2)}$

D. $\sqrt{(GM/Re)}$ (B)

Explanation: From energy conservation, ve $= \sqrt{(2gRe)} = \sqrt{(2GM/Re)}$.

6. Escape velocity on Earth's surface is approximately:

A. 7.9 km/s

B. 9.8 km/s

C. 11.2 km/s

D. 12.5 km/s

Explanation: Calculation gives ve ≈ 11.2

km/s.

7. The escape velocity from the Moon's surface is approximately:

A. 1.2 km/s

B. 2.38 km/s

C. 3.8 km/s

D. 11.2 km/s

Explanation: Using Moon's radius and gm ≈ q/6, ve ≈ 2.38 km/s.

8. Escape velocity depends on:

A. Mass of the escaping object only

B. Mass of the planet only

C. Mass of both object and planet

D. Neither object nor planet

(B)

Explanation: Escape velocity depends only on the mass and radius of the planet. Object's mass cancels out.

9. For a body near Earth's surface, escape velocity is related to orbital velocity by:

A. ve = vorbit

B. ve = 2vorbit

C. ve = $\sqrt{2}$ vorbit

D. ve = vorbit/ $\sqrt{2}$

Explanation: Circular orbital speed is vo = $\sqrt{\text{(gRe)}}$. Escape speed is ve = $\sqrt{\text{(2gRe)}}$

 $= \sqrt{2} \text{ vo.}$

10. The Moon has almost no atmosphere because:

A. Its gravity is too weak to hold gases

B. It has no magnetic field

C. Its surface is rocky

D. It is too close to Earth

(A)

Explanation: With escape speed only ~2.38 km/s, average thermal speeds of gas molecules exceed this, so gases escape into space.