राजस्थान बोर्ड

कक्षा-12 | भौतिक विज्ञान

¡ IDCa | Foundation 📆 missiongyan

अध्याय - ४। गतिमान आवेश ओर चुंबकत्व

QUIZ-01

- किस वैज्ञानिक ने सबसे पहले विद्युत धारा द्वारा चुंबकीय सुई के विचलन की खोज की थी?
 - A. एम्पियर

B. फैराडे

C. ऑरेस्टेड

- D. मैक्सवेल
- (C)

व्याख्या: ऑरेस्टेड ने देखा कि विद्युत धारा वाले तार के पास चुंबकीय सुई विचलित होती है, जिससे विद्युत और चुंबकत्व के बीच संबंध स्थापित हुआ।

- चुंबकीय क्षेत्र की SI इकाई क्या है?
 - A. गॉस

B. वेबर

C. टेस्ला

- D. ऐम्पियर
 - (C)

व्याख्या: चुंबकीय क्षेत्र की SI इकाई टेस्ला (T) होती है; 1 T = 1 N·s/(C·m)I

- किसी आवेश पर लोरेन्ट्ज बल का सूत्र है:
 - A.F = qE

- B. F = qB
- C. $F = q(E + v \times B)$
- D. F = q(v + B)

व्याख्या: लोरेन्ट्ज बल में विद्युत और चुंबकीय दोनों बल होते हैं, सूत्र है F = q(E + v × B)।

- धारा वहन करने वाले तार पर चुंबकीय बल का सूत्र है:
 - A.F = qvB

 $B. F = I(I \times B)$

C. $F = I^2 R$

- D.F = Blq
- (B)

व्याख्या: सीधी धारावाही चालक पर चुंबकीय बल होता है $F = I(I \times B)$.

- लंबे सोलेनॉइड के अंदर चुंबकीय क्षेत्र होता है :
 - A. μ_0 nI

C. μ_0 I

व्याख्या: लंबे सोलेनॉइड के अंदर चुंबकीय क्षेत्र समान होता है और B= μ_0 nl होता है।

- बायोट-सावर्ट नियम चुंबकीय क्षेत्र देता है:
 - A. केवल गतिशील आवेशों के लिए
 - B. चुंबकीय पदार्थों के लिए
 - C. एक धारा तत्च के लिए
 - D. स्थिर आवेशों के लिए

व्याख्या: बायोट-सावर्ट नियम एक छोटे धारा वहन करने वाले तत्व के कारण चुंबकीय क्षेत्र देता है।

- समान दिशा में धारा वहन करने वाले दो समांतर तार: 7.
 - A. एक-दूसरे को प्रतिकर्षित करते हैं
 - B. एक-दूसरे को आकर्षित करते हैं
 - C. कोई बल नहीं लगाते
 - D. एक विद्युत द्विध्रुव बनाते हैं

व्याख्या: समांतर धाराएं चुंबकीय क्षेत्र के प्रभाव से एक-दूसरे को आकर्षित करती हैं।

- किसी धारा युक्त लूप का चुंबकीय आघूर्ण होता है:
 - $A.I \times R$

 $B.I \times A$

C. $1 \times \mu_0$

- D. $I \times R^2$

व्याख्या: धारा युक्त लूप का चुंबकीय आघूर्ण होता है m = I × A, जहाँ A लूप का क्षेत्रफल है।

- एक समान चुंबकीय क्षेत्र में धारा वहन करने वाले लूप पर बल आघूर्ण होता है:
 - A. IABcosφ
- B. IABsinφ

C. IB

- D. IA

व्याख्या: बल आघूर्ण τ = IABsinφ होता है, जहाँ θ चुंबकीय क्षेत्र और लूप की लम्बवत दिशा के बीच का कोण है।

- 10. त्रिज्या R के धारा वहन करने वाले वृत्तीय लूप के केंद्र पर चंबकीय क्षेत्र है:
 - A. μ₀l/4R

C. μ_0 IR

- D. $\mu_0 I/R^2$

व्याख्या: वृत्तीय लूप के केंद्र पर चुंबकीय क्षेत्र होता है $B=\mu_0 I/2R$