CLASS 11 | PHYSICS

CHAPTER-7 | Gravitation

QUIZ **PART-02**

1. Which of the following correctly expresses the acceleration due to gravity at Earth's surface?

A.q = GM/R

B. $q = GM/R^2$

C. $q = G/(MR^2)$

D. $q = R^2/GM$ (D)

Explanation: At Earth's surface, $q = GM/R^2$, where M is Earth's mass and R its radius.

2. The value of g at a height h above Earth's surface is:

A. $q = q_s (R/(R+h))^2$

B. $q = q_s ((R+h)/R)^2$

C. $q = q_s (R/h)^2$

D. $q = q_s ((R-h)/R)^2$

(D)

(D)

- Explanation: At height h, g(h) = $GM/(R+h)^2 = g_s (R/(R+h))^2$.
- 3. For small heights $h \ll R$, the fractional decrease in g is approximately:

A.h/R

B. 2h/R

C. 3h/R

D. h^2/R^2 (D)

- Explanation: Using binomial approximation, $\Delta q/q \approx 2h/R$ for $h \ll R$.
- 4. At depth d inside Earth, the acceleration due to gravity is:

A. $g(d) = g_s$

B. $g(d) = g_s (1 - d/R)$

C. $q(d) = q_s (R/(R+d))^2$

D. Zero everywhere below the surface

- Explanation: Inside a uniform sphere, q \propto r. At depth d, g(d) = g_s (1 - d/R).
- 5. What is the value of g at Earth's center?

A. 9.8 m/s 2 B. GM/R 2

C. Zero

D. Infinite

Explanation: At the center, all

gravitational forces cancel, making g = 0.

6. The percentage decrease in g at small height h is given by:

A. $(h/R) \times 100\%$

B. $(2h/R) \times 100\%$

C. $(h^2/R^2) \times 100\%$

D. $(R/h) \times 100\%$ (B)

Explanation: For small h, % decrease = $(\Delta g/g) \times 100 = (2h/R) \times 100\%$.

7. The percentage decrease in g at depth d is:

A. $(d/R) \times 100\%$

B. $(2d/R) \times 100\%$

C. $(3d/R) \times 100\%$

D. $(d^2/R^2) \times 100\%$

(A)

Explanation: For depth d, % decrease = $(d/R) \times 100\%$.

8. At what location is g maximum on Earth?

A. Equator

B. Top of Mount Everest

C. Pole

D. Center of the Earth

(C)

(A)

(D)

- **Explanation:** Due to Earth's rotation and shape, g is maximum at the poles and minimum at the equator.
- 9. The standard mean value of g near Earth's surface is:

A. 9.8 m/s^2

B. 9.2 m/s^2

C. 9.9 m/s^2

D. 0 m/s^2

Explanation: The accepted average value of g is 9.8 m/s^2 .

10. Which of the following does NOT affect the value of g for a given location?

A. Earth's mass and radius

B. Height above Earth's surface

Z. C. Depth below Earth's surface

D. Mass of the falling object

Explanation: q depends only on Earth's properties and position, not on the mass or shape of the object.