CLASS 11 | Physic

(C)

CHAPTER-2 | Motion in a Straight Line

QUIZ PART-02

1. What is acceleration defined as?

- A. The rate of change of displacement with time
- B. The rate of change of velocity with time
- C. The slope of a position-time graph
- D. The total distance travelled per unit time (B

Explanation: Acceleration is the change in velocity per unit time, a vector quantity with SI unit m/s².

- 2. Which of the following represents retardation?
 - A. Velocity increasing with time
 - B. Acceleration constant and positive
 - C. Velocity decreasing with time
 - D. Zero acceleration with uniform motion (C)

Explanation: Retardation (or deceleration) means velocity decreases with time, so acceleration is negative.

- 3. What does the slope of a velocity-time graph represent?
 - A. Distance travelled
 - B. Speed
 - C. Acceleration
 - D. Displacement (C)

Explanation: The slope of a velocity–time graph gives acceleration, while the area under the graph gives displacement.

- 4. Which equation is known as the first equation of motion?
 - A. v = u + at
 - B. $a = ut + 1/2at^2$
 - C. $v^2 = u^2 + 2as$
 - D. a = u + v/2t (A

Explanation: The first equation of motion relates velocity, acceleration, and time: v= u+at

- 5. What is the second equation of motion derived from the average velocity?
 - A. v = u + at
 - B. $a = ut + 1/2at^2$
 - C. $v^2 = u^2 + 2as$
 - D. s = u + v/2t W n l o d d M i (B

COURSES

Explanation: Using displacement = average velocity × time, we get s= ut+1/2at²

- 6. Which equation is obtained by eliminating time from motion relations?
 - A. v = u + at
 - B. $s = ut + 1/2at^2$
 - C. $v^2 = u^2 + 2as$
 - D. s = u + v/2t (C)

Explanation: Eliminating tt from equations leads to the third equation of motion $v^2 = u^2 + 2as$

- 7. What is the dimensional formula of acceleration?
 - A. $[M^0 L^0 T^0]$
 - B. [M⁰ L¹ T-¹]
 - C. $[M^0 L^1 T^{-2}]$
 - D. [M¹ L¹ T⁻²]

 planation: Since acceleration = velocity/time in

Explanation: Since acceleration = velocity/time, its dimension $[M^0 L^1 T^{-2}]$

- 8. If a car's velocity changes from 5 m/s to 10 m/s in 5 seconds, its acceleration is
 - A. 0.1 m/s^2
 - B. $1 \, \text{m/s}^2$
 - C. 5 m/s^2
 - D. 10 m/s^2 (B)

Explanation: $a = v - u/t = 10 - 5/5 = 1 m/s^2$

- 9. Which of the following describes uniform acceleration?
 - A. Velocity increases by equal amounts in equal time intervals
 - B. Velocity decreases at varying rates
 - C. Velocity remains constant throughout
 - D. Displacement is always zero
- ero (A)
- *Explanation:* Uniform acceleration means velocity changes equally in equal intervals of time.
- 10. The area under a velocity–time graph between t=0 and t=T gives
 - A. Average speed
 - B. Displacement
 - C. Acceleration
 - D. Initial velocity
- (B)

Explanation: The area under the velocity–time curve represents displacement of the body.

TEST