CBSE Board

and kinetic energy are conserved.

Class 11 | Physics

CHAPTER-5 | Work, Energy and Power

OUIZ-01

Explanation: In a completely inelastic collision, the

masses stick together. Final velocity: $v_f = m_1/(m_1)$

 Which of the following conditions results in zero work being done by a force? A. Force and displacement are in the same direction 	6. If a person pushes hard against a rigid wall, but the wall does not move, what is the work done by the person on the wall?	
B. Force and displacement are in opposite directions	A. Positive C. Zero	B. Negative
C. Displacement is zero D. Force is large (C)	D. Cannot be deter	rmined (C)
Explanation: Work is defined as the dot product of	<i>Explanation :</i> Work re	equires displacement. Since the
force and displacement. If displacement is zero, the	wall doesn't move, the work is zero.	
work done is zero regardless of the force applied. 2. What is the scalar product of vectors A and B	7. A body of mass m moving with velocity v has	
when the angle between them is 90°?	kinetic energy given by :	
A. AB B. AB cos 90°	A. mv	B. ½ mv ²
C. AB sin 90° D. A + B (B)	C. v ² /2m	D. $m^2 v/2$ (B)
<i>Explanation</i> : The scalar product is A \cdot B = AB cos θ .		energy is defined as $\frac{1}{2}$ mv ² .
Since cos 90° = 0, the product becomes zero. 3. Which of the following statements is true about a	8. A 1000 kg car moving at 5 m/s hits a spring with spring constant 5.25 × 10 ³ N/m. What is the	
conservative force? A. Work depends only on time	maximum compression of the spring?	
B. Work depends on the path taken	A. 1.5 m	B. 1.0 m
C. Work depends on the path taken C. Work done in a closed path is not zero	C. 2.0 m	D. 0.5 m (C)
D. Work depends only on initial and final positions		,
(D)		$\frac{1}{2}$ mv ² = $\frac{1}{2}$ kx ² , x = $\sqrt{(mv^2/k)}$ =
<i>Explanation</i> : For conservative forces, the work done	$\sqrt{(1000 \times 25 / 5250)} = 2 \text{ m}.$	
depends only on the initial and final positions, not	9. The dot product of two perpendicular unit vectors	
on the path taken.	i and j is:	
 A spring is stretched by 0.2 m. If the spring constant is 100 N/m, what is the potential energy 	A. 1	B. 0
stored in the spring?	C1	D. Undefined (B)
A. 2 J B. 4 J	Explanation : Dot product of perpendicular vectors is	
C.1 J D. 0.5 J (C)	zero since cos 90° :	= O.
<i>Explanation</i> : Potential energy = $\frac{1}{2}$ kx ² = $\frac{1}{2}$ × 100 ×	10. In the case of a completely inelastic collision	
$(0.2)^2 = 1 \text{ J}.$	between two masses, the final velocity is given by	
5. In a collision, total kinetic energy is conserved only	A, $(m_1 - m_2)/(m_1 + m_2) v_i$	
if the collision is:	B. 2m ₁ /(m ₁ + m ₂) v _i	
A. Elastic B. Inelastic C. Completely inelastic D. Glancing (A)	C. $m_1/(m_1 + m_2) v_i$	ESI SERIES
Explanation: In elastic collisions, both momentum	D. $(m_1 + m_2)/m_1 v_i$	an App (c)

+ m_2) v_i .