CLASS 11 | PHYSICS

(C)

(B)

CHAPTER-7 | Mechanical Properties of Solids

QUIZ PART-02

- 1. The ratio of stress to strain within the limit of elasticity is called:
 - A. Poisson's ratio
- B. Elastic modulus
- C. Bulk stress
- D. Shear strain (B)
- **Explanation:** Stress/strain = modulus of elasticity. It represents how strongly a material resists deformation within its elastic limit.
- 2. The slope of the stress–strain curve in the elastic region represents:
 - A. Poisson's ratio
- B. Bulk modulus
- C. Elastic modulus
- D. Shear modulus

- (C)
- Explanation: In the elastic region, stress ∝ strain. The slope (stress/strain) is the modulus of elasticity.
- 3. Which physical quantity has the dimensions $[M^1L^{-1}T^{-2}]$?
 - A. Force

B. Pressure

C. Power

- D. Work (B)
- Explanation: The modulus of elasticity has the same dimensions as pressure, i.e., [M¹L⁻¹T⁻²].
- 4. Young's modulus of elasticity is defined as the ratio of:
 - A. Volume stress to volume strain
 - B. Shearing stress to shearing strain
 - C. Longitudinal stress to longitudinal strain
 - D. Lateral strain to longitudinal strain (C)
- **Explanation**: $Y = (F/A) \div (\Delta L/L)$. It applies to stretching or compressing a wire/rod.
- 5. If the radius of a cylindrical wire decreases when stretched, the ratio of lateral strain to longitudinal strain is called:
 - A. Bulk modulus
- B. Shear modulus
- C. Poisson's ratio
- D. Elastic modulus
- (C)
- Explanation: σ = lateral strain / longitudinal strain. Negative sign indicates reduction in radius when length increases.

- 6. The reciprocal of bulk modulus (K) is called:
 - A. Flexibility
- B. Plasticity
- C. Compressibility
- D. Rigidity
- **Explanation**: $\beta = 1/K$, representing how much a material reduces its volume under pressure.
- 7. Which of the following is true for gases?
 - A. They possess only shear elasticity
 - B. They possess only bulk elasticity
 - C. They possess both shear and bulk elasticity
 - D. They possess neither shear nor bulk elasticity

Explanation: Gases change volume under

- pressure but cannot resist shear stress.
- 8. The relation $Y = 2\eta(1+\sigma)$ connects:
 - A. Young's modulus, Bulk modulus, and Poisson's ratio
 - B. Young's modulus, Shear modulus, and Poisson's ratio
 - C. Bulk modulus, Shear modulus, and Stress
 - D. Stress, Strain, and Poisson's ratio (B)
- *Explanation :* This formula shows how shear modulus and Poisson's ratio determine Young's modulus.
- 9. If the stress applied to a wire of unit crosssectional area doubles its length, the stress numerically equals:
 - A. Young's modulus
 - B. Twice Young's modulus
 - C. Half Young's modulus
 - D. Four times Young's modulus (A)
- **Explanation:** By definition, Young's modulus is that stress which doubles the length of a wire with unit cross-section.
- 10. For any material, the practical value of Poisson's ratio (σ) is:
 - A. Greater than 1
- B. Less than 0.5
- C. Exactly 0.5
- D. Negative (E
- **Explanation :** In practice, σ is always < 0.5. At σ = 0.5, the volume would remain unchanged, which is not realistic.