CLASS 11 | PHYSICS

CHAPTER-4 | Laws of Motion

QUIZ **PART-05**

1.	A car of mass m moves on a flat circular road
	of radius r with coefficient of friction μ . The
	maximum speed without slipping is:

A. $\sqrt{(rg)}$

B. $\sqrt{\mu rg}$

C. µrg

D. rg/μ

(D)

Explanation: B) $\sqrt{\mu rg}$

2. On a flat road, friction provides the centripetal force: $(mv^2/r = \mu mg) \Rightarrow v = \sqrt{(\mu rg)}$.

A. $\sqrt{(rgcot\theta)}$

B. $\sqrt{(rqtan\theta)}$

C. $\sqrt{\mu rg}$

D. rg $tan\theta$ (D)

Explanation: At optimum speed, normal force components balance weight and centripetal force without friction.

3. A cyclist moves at 18 km/h on a curve of radius 3 m. If μ = 0.1, will the cyclist slip?

A. No, because v < vmax

B. Yes, because v > vmax

C. No, because friction is absent

D. Cannot be determined

Explanation: v = 5 m/s, $v = \sqrt{(\mu rq)} = 1.71 \text{ m/s}$. Since actual speed exceeds limit, slipping occurs.

4. For a vehicle on a banked road with friction helping motion, the expression for maximum speed is:

A. $\sqrt{(rg(tan\theta + \mu)/(1-\mu tan\theta))}$

B. $\sqrt{(rgtan\theta)}$

C. $\sqrt{(rg(tan\theta-\mu)/(1+\mu tan\theta))}$

(A) D. $\sqrt{\mu rg}$

Explanation: Friction in the direction of centripetal force increases the safe speed limit.

5. When is the minimum speed concept relevant on a banked curve?

A. When friction is absent

B. When friction acts outward, opposing

C. When speed equals optimum speed

D. Only on flat roads.

(B)

Explanation: At very low speeds, friction acts down the slope to provide centripetal force, giving a minimum speed limit.

6. The condition for no slipping of a vehicle on a flat circular road is:

A. $v^2 < rq$

B. $v^2 < \mu rq$

C. $v^2 > rq$

D. $v^{2} = \mu q$ (B)

Explanation: If velocity exceeds this limit, required centripetal force surpasses maximum frictional force.

7. A race track has radius 300 m, bank angle 15°, µ = 0.2. The optimum speed is closest to:

A. 14.5 m/s

B. 19.6 m/s

C. 28.1 m/s

D. 38.1 m/s

(C)

Explanation: $v = \sqrt{(rg \tan \theta)} = \sqrt{(300 \times 9.8 \times 10^{-3})}$ $tan15^{\circ}$) $\approx 28.1 \text{ m/s}.$

8. On a banked road, if a vehicle moves exactly at optimum speed:

A. Friction is maximum

B. Friction is zero

C. Friction balances centripetal force

D. Friction opposes motion

(B)

Explanation: At optimum speed, the banking angle alone provides required centripetal force.

9. Which force provides the necessary centripetal force for circular motion of a car on a level road?

A. Normal reaction

B. Gravitational force

C. Frictional force

D. Pseudo force

(C)

Explanation: Horizontal component of static friction supplies centripetal force on level ground.

10. A cyclist moves at uniform speed of 7 m/s on a flat turn. If μ = 0.25, the minimum radius of the turn for safety is:

A. 9.8 m

B. 19.6 m

C. 4.9 m D. 0 m

Gvan App

(B)

Explanation: Condition is $r = v^2/(\mu q) =$ $7^2/(0.25 \times 9.8) \approx 19.6 \text{ m}.$