CLASS 11 | Physic

CHAPTER-1 | Units and Measurement

QUIZ

- Which principle is used to check the dimensional correctness of an equation?
 - A. Principle of relativity
 - B. Principle of homogeneity of dimensions
 - C. Law of conservation of energy
 - D. Newton's first law (B)
- **Explanation:** Only similar dimensional quantities can be added or subtracted in an equation; this is called the principle of homogeneity of dimensions
- 2. The conversion factor from joule to erg is:
 - A. $1 J = 10^5 \text{ erg}$
 - B. $1 J = 10^6 \text{ erg}$
 - C. $1 J = 10^7 \text{ erg}$
 - D. $1 J = 10^8 \text{ erg}$

- Explanation: Using dimensional analysis between SI and CGS, 1 joule= 10⁷ erg
- 3. Which of the following equations is dimensionally correct?
 - A. $V = U + at^2$
 - B. $s = ut + 1/2 at^2$
 - C. K.E. = mgh^2
 - D. $F = ma^2$ (B)
- Explanation: In s= ut + 1/2at2 every term has dimension of length [L]; hence it is correct.
- 4. Which of the following quantities cannot be derived using dimensional analysis?
 - A. Time period of a simple pendulum
 - B. Energy of a photon
 - C. Equation involving logarithmic functions
 - D. Velocity of sound in air

- Explanation: The method of dimensions was applied to deduce T = $2\pi\sqrt{1/g}$ for a simple pendulum
- 5. Which of the following cannot be checked using dimensional analysis?
 - A. Equations involving logarithms
 - B. Equations involving constants
 - C. Equations with three variables
 - D. Conversion of units
- Explanation: Dimensional analysis cannot be used where logarithmic, trigonometric, or exponential functions appear

- 6. The limitation of dimensional analysis is that it cannot provide:
 - A. The units of a derived quantity
 - B. Numerical constants and pure numbers
 - C. Consistency check of an equation
 - D. Conversion between SI and CGS (B)
- **Explanation:** Dimensional analysis cannot give values of constants or dimensionless numbers like 2π2\pi
- 7. Formatting of option
 - A. $[M^0 L^0 T^3]$ and $[M^1 L^2 T^{-2}]$
 - B. $[M^0L^0T^5]$ and $[M^1L^6T^{-2}]$
 - C. $[M^1L^5T^{-2}]$ and $[M^0L^3T^0]$
 - D. $[M^2L^5T^{-2}]$ and $[M^0L^6T^0]$

(C)

- Explanation: For van der Waals equation, a has dimension $[M^1L^5T^{-2}]$ and b has $[M^0L^3T^0]$.
- 8. Which conversion is correct?
 - A. $9.8 \text{ m/s}^2 = 980 \text{ cm/s}^2$
 - B. $9.8 \text{ m/s}^2 = 9.8 \times 10^3 \text{ cm/s}^2$
 - C. $9.8 \text{ m/s}^2 = 98 \text{ cm/s}^2$
 - D. $9.8 \text{ m/s}^2 = 9.8 * 10^2 \text{ cm/s}^2$
- **Explanation:** 1 m = 100 cm. So, 9.8 m/s² = 9.8*100=980cm/s²
- 9. The correct conversion is:
 - A. $1 \text{ gm/cm}^3 = 1 \text{ kg/m}^3$
 - B. $1 \text{ gm/cm}^3 = 10^2 \text{ kg/m}^3$
 - C. 1 $gm/cm^3=10^3 kg/m^3$
 - D. $1 \text{ gm/cm}^3 = 10^4 \text{ kg/m}^3$
- Explanation: 1 gm/ cm³ = 1000 kg/m³ after converting g to kg and cm to m.
- 10. Which of the following is NOT a correct use of dimensional analysis?
 - A. Checking correctness of physical equations
 - B. Converting units from one system to anothe
 - C. Determining whether a quantity is scalar or
 - D. Deriving approximate relations between physical quantities
- **Explanation:** Dimensional analysis cannot determine whether a physical quantity is scalar or vector.