CLASS 11 | PHYSICS

CHAPTER-3 | Motion in a Plane

QUIZ PART-02

1.	Which statement best describes the triangle law of
	vector addition?

- A. The resultant equals the arithmetic sum of magnitudes.
- B. The third side of a triangle in the same order gives the difference.
- C. If two vectors are represented by two sides of a triangle in the same order, the third side (opposite order) gives the resultant.
- D. The diagonal of a rectangle gives the resultant. (C) Explanation: When two vectors are placed head-to-tail as two sides of a triangle in the same order, the third side taken in the opposite order represents the resultant.
- 2. In the parallelogram law, the resultant of two vectors represented as adjacent sides is:
 - A. The shorter side of the parallelogram
 - B. Any diagonal
 - C. The diagonal of the parallelogram
 - D. The side parallel to the larger vector
- Explanation: If two vectors form adjacent sides of a parallelogram, the resultant is completely represented by the diagonal.
- 3. The polygon law asserts that if several vectors are arranged head-to-tail in order, the resultant is:
 - A. The first side of the polygon
 - B. The closing side taken in the opposite order
 - C. The longest side of the polygon
 - D. Zero for any closed polygon (B)
- **Explanation:** For multiple vectors placed in sequence, the resultant is given by the closing side taken in the opposite order.
- 4. Which formula gives the magnitude R of the resultant of two vectors P and Q with included angle θ ?
 - A. $R^2=P^2+Q^2-2PQ\cos\theta$
- B. $R=P+Q\cos\theta$
- C. $R^2=P^2+Q^2+2PQ\cos\theta$
- D. $R=\sqrt{(P^2+Q^2-2PQ\sin\theta)}$
- (C) **Explanation:** The derivation leads to the law of cosines for vector addition: R^2=P^2+Q^2+2PQcosθ.
- 5. The angle α that the resultant makes with vector P is given by:
 - A. $tan\alpha = Psin\theta/(Q + Pcos\theta)$
 - B. $\tan\alpha = Q\sin\theta/(P+Q\cos\theta)$
 - C. $\tan\alpha = Q\cos\theta/(P + Q\sin\theta)$
 - D. $\tan \alpha = (P+Q)/\sin \theta$
- Explanation: The direction formula obtained from the geometric setup is $\tan \alpha = Q \sin \theta / (P + Q \cos \theta)$.

- 6. If two vectors are in the same direction $(\theta=0^{\circ})$, the magnitude of the resultant is:
 - A. R=|P-Q|

B. $R = \sqrt{(P^2 + Q^2)}$

- C. R=P+Q
- D. $R = \sqrt{(P^2 + Q^2 + 2PQ)}$

- **Explanation:** For $\theta=0^{\circ}$, the cosine term gives R=P+Q; the direction angle α =0°.
- 7. Two vectors are perpendicular. Then:
 - A. $R=\sqrt{(P^2+Q^2)}$ and $tan\alpha=Q/P$
 - B. R=P+Q and α =0°
 - C. R=|P-Q| and $\alpha=180^{\circ}$
 - D. $R=\sqrt{(P^2+Q^2-2PQ)}$ and $tan\alpha=P/Q$
- **Explanation**: With $\theta=90^{\circ}$, R= $\sqrt{(P^2+Q^2)}$ and $\tan \alpha = Q/P$.
- 8. For two vectors in opposite directions $(\theta=\pi)$, which is correct?
 - A. R=P+Q and α =0
 - B. R= $\sqrt{(P^2+Q^2)}$ and $\alpha=90^\circ$
 - C. R=P-Q with α =0 when P>Q, α = π when P<Q
 - D. R=2PQ and α = θ

- (C)
- **Explanation:** Using the cosine form,
 - $R^2=(P-Q)^2 \Rightarrow R=P-Q$ in this setup, with the direction noted by cases on P and Q.
- 9. Two forces of 3N and 4N act perpendicular to each other. The resultant is:
 - A. 9N

B. 16N

C. 5N

- D. 7N
- (C)
- **Explanation:** For perpendicular vectors,
 - $R=\sqrt{(3^2+4^2)=5N}$.
- 10.Two equal vectors have a resultant equal in magnitude to either vector. The angle between them is:
 - A. 90° C. 120°
- B. 0° R | E S
- (C)
- Explanation: Let P=Q and R=P. From
 - $R^2=P^2+Q^2+2PQ\cos\theta$, this gives
 - $\cos\theta = -1/2 \Rightarrow \theta = 120^{\circ}$.

(B)