CBSE Board

Class 11 | Physics

₩IDCa Foundation missiongyan[®]

CHAPTER-7 | Gravitation

QUIZ-01

1.	What is the nature of the gravitational force
	between two point masses?

- A. Repulsive and central
- B. Attractive and non-central
- C. Attractive and central
- D. Repulsive and non-central

Explanation: Gravitational force is always attractive and acts along the line joining the two masses, making it a central force.

2. Which of the following correctly represents Kepler's Third Law?

A. $T^2 \propto a$ C. T \propto a²

- B. $T^2 \propto a^3$
- D T³ \propto a²

Explanation: Kepler's third law states that the square of the time period is proportional to the cube of the semi-major axis.

3. What is the value of the universal gravitational constant G?

- A. 9.8 N·ka⁻¹·m⁻¹
- B. $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
- $C. 3.00 \times 10^8 \text{ m/s}$
- D. 1.6×10^{-19} C

Explanation: The experimentally determined value of G is $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.

4. What is the approximate escape speed from the Earth's surface?

A. 7.9 km/s

B. 9.8 km/s

C. 11.2 km/s

D. 12.6 km/s (C)

Explanation: Escape speed is the minimum speed required to escape Earth's gravity, about 11.2 km/s.

5. What is the gravitational potential energy between two masses m1 and m2 separated by distance r?

A. Gm₁m₂/r

- C. $-Gm_1m_2/r$
- D. $-Gm_1m_2 \cdot r^2$

Explanation: Gravitational potential energy is negative and given by –Gm₁m₂/r.

6. At which point is the acceleration due to gravity maximum?

- A. At Earth's center
- B. At a certain height above surface
- C. At Earth's surface
- D. Deep inside Earth

(C)

Explanation: Acceleration due to gravity is maximum at Earth's surface and decreases above or below it.

7. If the distance between two masses is doubled, the gravitational force becomes:

A. 2 times

B. 4 times

C. Half

D. One-fourth

(D)

Explanation: Gravitational force varies inversely with the square of the distance. Doubling distance reduces it to one-fourth.

8. Where is the gravitational force zero inside a uniform spherical shell?

- A. At the center only
- B. Anywhere inside
- C. Outside the shell
- D. On the surface only

(B)

Explanation: A point mass placed anywhere inside a uniform spherical shell experiences zero net gravitational force.

9. What is the orbital speed v of a satellite at height h from Earth's surface?

- A. $\sqrt{(GM/(R + h))}$
- B. $\sqrt{(gR)}$
- C. $\sqrt{(2g(R + h))}$
- D. GMh

Explanation: Orbital speed is derived from equating

gravitational and centripetal forces.

10. What is the total mechanical energy of a satellite in circular orbit of radius r?

- A. GMm/r
 - B. -GMm/r
- C.-GMm/2r

D. GMm/2r

(C)

(A)

Explanation: Total mechanical energy is the sum of kinetic and potential energy, equal to -GMm/2r.