CLASS 11 | PHYSICS

CHAPTER-6 | Systems of Particles and Rotational Motion

QUIZ PART-04

1. The moment of inertia of a point mass m at a distance r from the axis of rotation is

A.I = mr

 $B.I = mr^2$

 $C.I = m^2r$

- D. $I = m^2r^2$ (B)
- **Explanation:** Moment of inertia depends on both mass and the square of the perpendicular distance from the axis: $I = mr^2$.
- Which factor does not affect the moment of inertia of a body?
 - A. Mass of the body
 - B. Mass distribution about axis
 - C. Position of axis of rotation
 - D. Velocity of the body

- (D)
- Explanation: MOI depends only on mass, distribution of mass, and axis position not on linear or angular velocity.
- 3. Torque acting on a rigid body in rotational motion is expressed as

 $A. \tau = |\alpha|$

B. $\tau = 1 \omega$

 $C. \tau = L \omega$

- D. $\tau = L/I$ (A)
- Explanation: Resultant torque is proportional to angular acceleration with MOI as the constant: $\tau = I\alpha$.
- 4. Angular momentum of a rigid body rotating with angular velocity ω is

A. L = $|\alpha|$

 $B.L = L\omega$

 $C. L = \tau \omega$

- D. L = E ω (B)
- Explanation: Angular momentum is given by the product of MOI and angular velocity: $L = I\omega$.
- 5. Rotational kinetic energy of a body is

A. $\frac{1}{2} | \alpha^2 \rangle$ B. $\frac{1}{2} | \omega^2 \rangle$

C. $\frac{1}{2}$ L²

D. $\frac{1}{2}$ τ^2

- (B)
- **Explanation**: The energy associated with rotational motion is E = $\frac{1}{2}$ | ω^2 .

6. The perpendicular axis theorem states

A. Iz = Ix - Iy

B. Iz = Ix + Iy

C. |x = |v + |z|

D. |v| = |x| + |z| (B)

- **Explanation:** For a planar lamina, MOI about a perpendicular axis equals the sum of MOIs about two perpendicular axes in its plane: Iz = Ix + Iy.
- 7. The parallel axis theorem can be written as

A.I = IG + md

 $B. I = IG - md^2$

C. $I = IG + md^2$

D. $I = IG / md^2$ (C)

- Explanation: MOI about any axis parallel to one through the center of mass is I = IG + md², where d is the distance between the axes.
- 8. The moment of inertia of a thin rod of length L about an axis through its midpoint and perpendicular to the rod is

A. $ML^2/2$

B. $ML^{2}/12$

 $C. ML^2/3$

 $D MI^2$

(B)

- **Explanation:** For a uniform thin rod about the midpoint and perpendicular to its length: $I = ML^2/12$.
- 9. The moment of inertia of a solid sphere of mass M and radius R about a diameter is

A. $2/5 MR^2$

B. 3/5 MR²

C. 1/2 MR²

D. MR²

- **Explanation:** For a solid sphere about its diameter, the MOI is 2/5 MR².
- Which of the 10. following formulas is incorrect?

A. $\tau = |\alpha|$

 $B.L = L\omega$

Z C. E = $\frac{1}{2}$ I ω^2 D. Σ mr = 2I S (D)

Explanation: The first three are standard rotational motion formulas. The last one is wrong and not a valid relation.