CBSE Board

A. Newton (N)

1. What is the SI unit of stress?

Class 11 | Physics

type of stress?

CHAPTER-8 | Mechanical Properties of Solids

B. Pascal (Pa)

QUIZ-01

6. A solid sphere submerged in a fluid is under which

C. Joule (J)	D. Watt (W)	(B)	A. Tensile stress	B. Shearing str	ess
<i>Explanation:</i> Stress is defined as force per unit area,			C. Hydraulic stress	D. Fracture stre	ess (C)
and its SI unit is Newton per square meter, which is			Explanation: When submerged, the sphere		
called Pascal (Pa).			experiences forces from all directions, which is		
2. The ratio of change in length to the original length			hydraulic stress resulting in volume strain.		
of a material under stress is called :			7. The ratio of lateral strain to longitudinal strain is		
A. Shearing strain B. Compressive strain		called:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
C. Longitudinal strair	D. Volume strair	1 (C)	A. Young's modulus	B. Bulk modulu	ıs
Explanation: Longitudinal strain is defined as the			C. Poisson's ratio	D. Shear modu	
change in length (Δ L) divided by the original length			Explanation: Poisson's ratio is defined as the		
(L) of the object.			negative ratio of lateral strain to longitudinal		
3. Hooke's Law is valid only:			strain, indicating dimensional contraction.		
A. After the elastic limit			8. Which one of the following materials is an		
B. For large deformations			elastomer?	willig materials is an	
C. Before the fracture point				B. Brass	
	egion of the stress-strain		A. Steel C. Rubber	D. Glass	(C)
curve		(D)			(C)
Explanation: Hooke's Law holds true in the linear			Explanation : Elastomers		_
portion of the stress-strain graph, where stress is			large strains and still return to their original shape,		
directly proportional to strain.			although they may not obey Hooke's Law.		
4. Which of the following materials has the highest			9. In which type of modulus is the strain defined as		
Young's modulus?	B. Aluminium		the change in volume p	_	
A. Copper C. Steel	D. Brass	(C)	A. Young's modulus	B. Shear modu	
		(C)	C. Bulk modulus	D. Poisson's mo	
Explanation: Steel has the highest Young's modulus among these materials, meaning it is more					(C)
resistant to elongation under tensile stress.			Explanation : Bulk modulus involves volume strain,		
5. The area under the stress-strain curve in the elastic			which is the change in volume divided by the		
region represents:			original volume.		
A. Force			10. A beam is more resistant to bending when its:		
B. Elastic potential energy per unit volume			A. Breadth is increased	GT GEDIE	
C. Strain energy only for plastic materials			C. Depth is increased	D. Volume is re	duced
D. Shearing modulus		(B)	sion Gya	n App	(C)
_	under the curve in the ela	Explanation: Resistance to bending increases			
region gives the elastic potential energy stored per			significantly with depth because deflection is		
unit volume: (1/2) × stress × strain.			inversely proportional to the cube of depth (8 \propto		
(,)			1/d³).		