CLASS 11 | Physic

CHAPTER-1 | Units and Measurement

QUIZ PART-02

- The dimensional formula of force is:
 - A. $[M^1L^2T^{-2}]$
 - B. $[M^1L^1T^{-2}]$
 - C. $[M^0L^1T^{-2}]$
 - D. $[M^1L^0T^{-2}]$

Explanation: Force is mass **x** acceleration. Its dimensional formula is [M1L1T-2].

- 2. Which of the following is a dimensionless quantity?
 - A. Strain
 - B. Density
 - C. Pressure
 - D. Frequency

(B)

- Explanation: Strain is the ratio of change in dimension to initial dimension, hence it is dimensionless [MoloTo].
- 3. The dimensional formula of torque is the same as:
 - A. Force
 - B. Energy
 - C. Pressure
 - D. Power (B)
- **Explanation:** Torque has the same dimensional formula as work/energy, which is $[M^1L^2T^{-2}]$.
- 4. The SI unit of surface tension is:
 - A. Joule
 - B. Pascal
 - C. Newton metre-1
 - D. Newton second

(C)

- Explanation: Surface tension is force per unit length. Its SI unit is N m-1.
- 5. The dimensional formula of momentum is:
 - A. $[M^{1}L^{1}T^{-1}]$
 - B. $[M^0L^1T^{-2}]$
 - C. $[M^1L^2T^{-2}]$

D. [M⁰L⁰T-1¹] W n l

Explanation: Momentum = mass **x** velocity. Dimension is $[M^1L^1T^{-1}]$.

- 6. Which of the following pairs has the same dimensions?
 - A. Force and Work
 - B. Momentum and Impulse
 - C. Power and Torque
 - D. Frequency and Energy

(B)

Explanation: Momentum and impulse both have the dimensional formula [M¹L¹T-¹].

- 7. The dimensional formula of Planck's constant is:
 - A. $[M^1L^2T^{-1}]$
 - B. $[M^1L^2T^{-2}]$
 - C. $[M^1L^2T^0]$
 - D. $[M^0L^2T^{-1}]$

(A)

Explanation: Planck's constant has the formula energy/frequency, giving [M¹L²T-¹].

- 8. The SI unit of pressure is:
 - A. Watt
 - B. Joule
 - C. Pascal
 - D. Newton metre

Explanation: Pressure = force/area. Its SI unit is Pascal (N m-2).

- 9. The dimensional formula of density is:
 - A. $[M^1L^{-3}T^0]$
 - B. [M⁰L⁻³T¹]
 - C. $[M^1L^0T^{-3}]$
 - D. [M₀L₃T₀]

(A)

Explanation: Density = mass/volume. Dimension is $[M^{1}L^{-3}T^{0}].$

- 10. The dimensional formula of the gravitational constant (G) is:
 - A. $[M^1L^2T^{-2}]$
 - B. $[M^0L^1T^{-2}]$
 - C. $[M^{-1}L^3T^{-2}]$
 - D. [M-2L3T-1]

Explanation: From Newton's law of gravitation, G has dimension $[M^{-1}L^3T^{-2}]$.