

CLASS 11 | Physic

CHAPTER-2 | Motion in a Straight Line

QUIZ PART-04

- When two particles move in the same direction, their relative velocity is
 - A. The product of their speeds
 - B. The difference of their speeds
 - C. The sum of their speeds
 - D. Zero (B)
- **Explanation:** For motion in the same direction, relative velocity is the difference between their individual speeds.
- When two particles move in opposite directions, their relative velocity is
 - A. The product of their speeds
 - B. The difference of their speeds
 - C. The sum of their speeds
 - D. Zero (C)
- *Explanation:* In opposite directions, relative velocity equals the sum of their speeds.
- 3. Differential calculus in physics is mainly used to calculate
 - A. Work and energy
 - B. Rate of instantaneous change
 - C. Heat transfer
 - D. Electric current (B)
- **Explanation:** Differential calculus deals with rates of instantaneous change such as velocity and acceleration.
- 4. If $x=t^2+9-6t$ the velocity of the particle is
 - A. $y = t^2 6$
 - B. v=2t-6
 - C. v = 2t 9
 - D. v=t-6
- **Explanation :** Differentiating displacement with respect to time gives v=2t-6
- 5. For the equation $x=8+12t-t^3$ the velocity is zero at
 - A. t=2
 - B. t=3ideo COURSES
 - C. t=4
 - D. t=6D o wnload Mi@
- Explanation: Differentiating gives v=12-3t², Setting v=0 gives t= 4

- 6. The acceleration of the particle in Q5 at t=2 is
 - A. -6 m/s^2
 - B. -12 m/s^2
 - $C. +6 \text{ m/s}^2$
 - D. $+12 \text{ m/s}^2$ (B)
- Explanation: a=dv/dt=-6t, At t= 2, a= -12 m/s²
- 7. Integration in physics is primarily used to calculate
 - A. Force only
 - B. Instantaneous change
 - C. Position, velocity, and work
 - D. Density of matter

- (C)
- **Explanation:** Integration helps find displacement from velocity, velocity from acceleration, and work from force
- 8. The work done by a restoring force F = kx between xi, and xf is.
 - $A. -\frac{\kappa}{2}(x_f^2 x_i^2)$
 - B. k(xf xi)
 - C. k (xf xi)
 - $D. k(x_f^2 x_i^2)$ (A)
- Explanation: Work is the integral of force: W =
- $\int_{-kxdx}^{x} = -\frac{k}{2}(x_{t}^{2} x_{t}^{2}).$ 9. A particle moves with velocity = $3t\hat{i} + 2t\hat{j} + 5\hat{k}$. Its position at is t = 2
 - $A.8\hat{1}+4\hat{1}+10\hat{k}$
 - B. $6\hat{i} + 4\hat{j} + 5\hat{k}$
 - $C.3\hat{1}+2\hat{1}+10\hat{k}$
 - D. $12\hat{i} + 8\hat{j} + 5\hat{k}$ (B)
- **Explanation:** Integrating velocity from 0 to 2 gives displacement $8\hat{i}+4\hat{j}+10\hat{k}$.
- 10. If $s = 3t^3 + 7t^2 + 14t + 8$ the acceleration at t=1 is
 - A. 10 m/s^2
 - B. 32 m/s^2
 - C. 23 m/s²
 - D. 16 m/s² (B)
- **Explanation:** $v=ds/dt = 9t^2 + 14t + 14$. Then a=dv/dt = 18t+14. At t=1, $a=32m/s^2$.

(B)