CBSE Board

Class 11 | Physics

CHAPTER-6 | Systems of Particles and Rotational Motion

B. Perpendicular to the axis of rotation

determined by the right-hand rule.

Explanation: The angular velocity vector points along the axis of rotation in the direction

C. Along the radius vector

D. Along the axis of rotation

QUIZ-01

1. What is the condition for pure translational motion	6. Which one of the following expressions represent
in a rigid body?	torque (moment of force)?
A. All particles of the body move in circles.	A. F×r B. r·F
B. The angular velocity of all particles is the same.	C.r×F D.F·r (C)
C. All particles of the body have the same velocity	Explanation: Torque is defined as the vector product
at any instant.	
D. The velocity of the centre of mass is zero. (C)	$\tau = r \times F$, where r is the position vector.
Explanation: In pure translation, all particles of the	7. When the total external force on a system is zero,
rigid body move parallel to each other with the	what remains constant?
same velocity at a given instant.	A. Angular velocity
2. The vector expression for the position of the	B. Angular momentum
centre of mass of a system of particles is:	C. Linear momentum
A. R = $1/M \sum m_i v_i$ B. R = $\sum m_i r_i$	D. Moment of inertia (C)
C. $R = 1/M \sum m_i r_i$ D. $R = \sum r_i$ (C)	<i>Explanation:</i> If the net external force is zero, the
Explanation: The position vector of the centre of	total linear momentum of the system remains
mass is given by R = 1/M $\sum m_i r_i$, where M is the total	conserved.
mass of the system.	8. In rotational motion about a fixed axis, which
3. When a projectile explodes mid-air, what happens	particles have zero linear velocity?
to the centre of mass of its fragments?	A. All particles on the boundary
A. It stops instantly.	
B. It continues on the same parabolic path.	B. Particles farthest from the axis
C. It deviates in the direction of the heaviest	C. Particles lying on the axis
fragment.	D. Particles with maximum angular displacement
D. It falls vertically downward. (B)	(C)
Explanation: The explosion involves internal forces,	<i>Explanation:</i> Particles on the axis of rotation have
so the external force (gravity) remains unchanged.	zero perpendicular distance from the axis and
Thus, the centre of mass continues on its original parabolic trajectory.	hence zero linear velocity.
4. For three equal-mass particles forming a triangle,	9. For a rigid body under rotational motion, the linea
the centre of mass lies at :	velocity of a particle is given by:
A. The midpoint of the longest side	A. $V = F \times r$ B. $V = \omega \cdot r$
B. The centroid of the triangle	C. $v = \omega \times r$ D. $v = r \cdot \omega$ (C)
C. The midpoint between any two particles	Explanation: The linear velocity v of a particle in
D. The centre of the inscribed circle (B)	rotational motion is given by the vector product
Explanation: For particles of equal mass, the centre	$V = \omega \times r$.
of mass lies at the centroid of the triangle they	
form.	10. What is the necessary condition for mechanical
5. What is the direction of angular velocity vector in	equilibrium of a rigid body?
rotational motion about a fixed axis?	A. Net force and net torque are zero
A. Along the velocity of the particle	Z B. Net torque is maximum T S E R I E S

(D)

C. Angular acceleration is non-zero

torque acting on it are zero.

D. Moment of inertia is constant

Explanation: A body is in mechanical equilibrium

when both the net external force and net external

(A)