

Foundation

CLASS - 11

PHYSICS

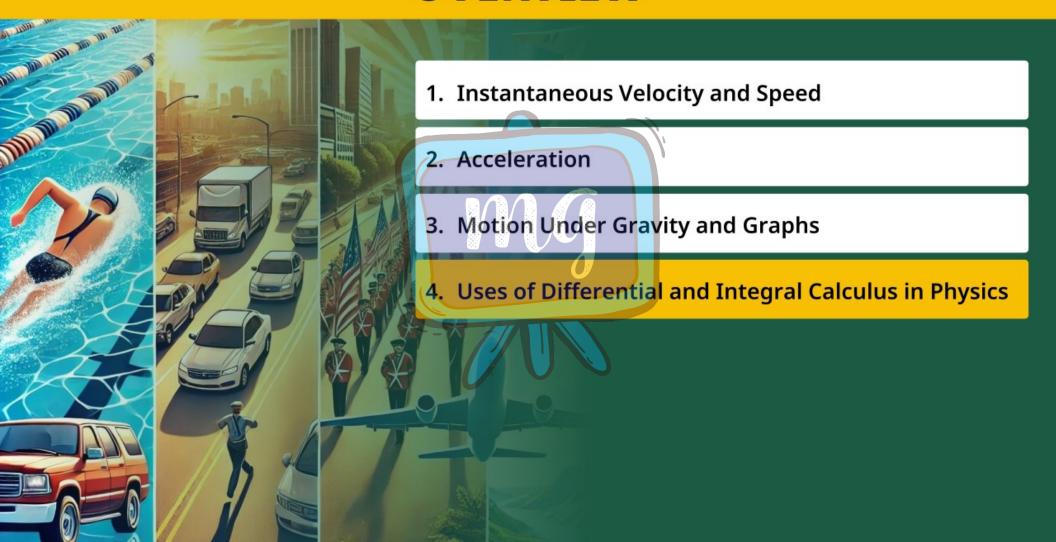
Chapter – 2

Motion in a Straight Line

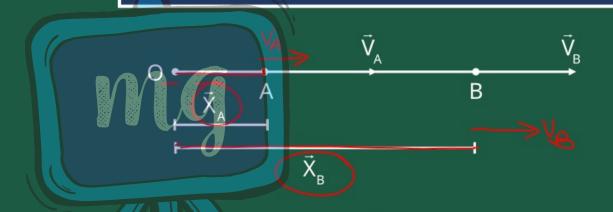
Part – 4
Uses of Differential and Integral
Calculus in Physics

Alok Gaur

OVERVIEW

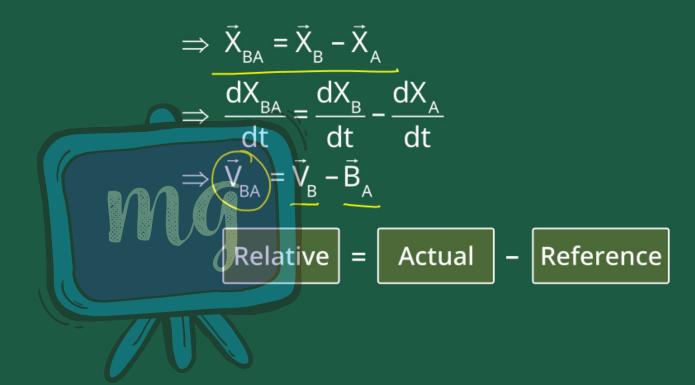


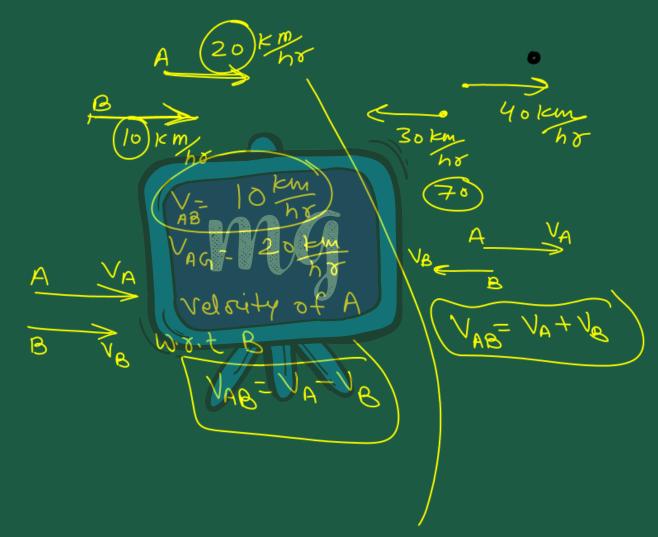
RELATIVE VELOCITY IN ONE DIMENSION

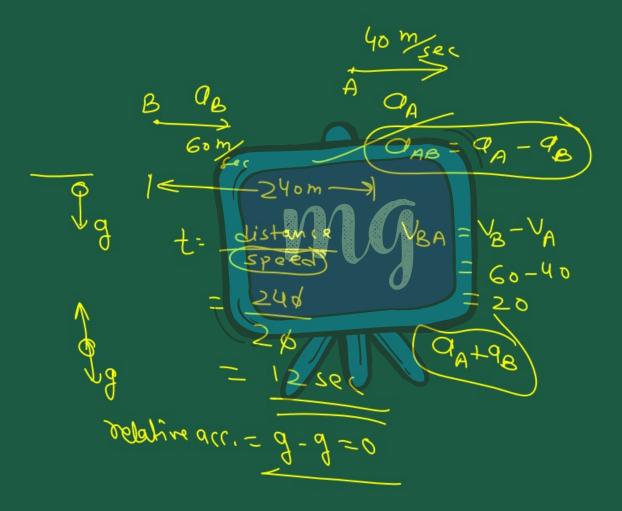


Displacement of B with respect to A

Displacement of B as measured from A

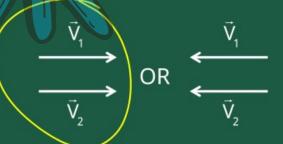






For same direction:

When two particles are moving in the same direction, then magnitude of their relative velocity is equal to the difference between their individual speeds.



$$\left| \vec{V}_{12} \right| \text{ or } \left| \vec{V}_{21} \right| = V_1 \sim V_2$$

For opposite direction:

When two particles are moving in the opposite directions, then magnitude of their relative velocity is always equal sum of their individual speeds.

$$\begin{array}{ccc}
\vec{V}_1 \\
\vec{V}_2
\end{array}$$
OR
$$\begin{array}{c}
\vec{V}_1 \\
\vec{V}_2
\end{array}$$

$$|\vec{V}_{12}| \text{ or } |\vec{V}_{21}| = v_1 + v_2$$

When two particles move

simultaneously then the concept of relative motion becomes applicable conveniently.

DIFFERENT CALCULUS

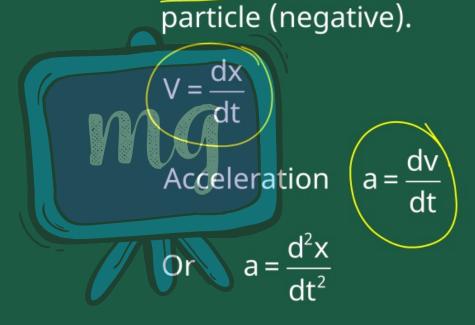
 $* \left[\frac{d(x^n) = h x^{n-1}}{dx} \right]$

Differential calculus is the branch in which the rate of instant change in a variable quantity relative to another variable quantity is studied.

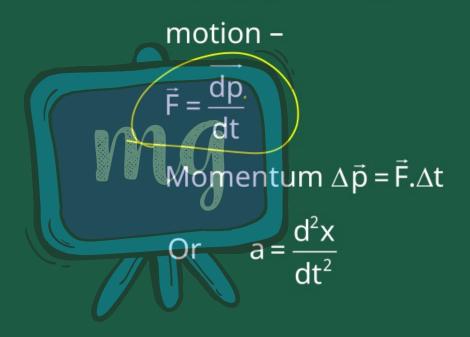
differential co-efficient dx of y relative to x

Instantaneous
$$= \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

(c) Motion with the initial velocity of the



Similarly from the second law of



FORMULAE OF DIFFERENTIAL CALCULUS



$$\frac{d}{dx}(a^{x}) = a^{x}log_{e}a$$

$$\frac{d}{dx}(sinx) = cosx$$

$$\frac{d}{dx}(cosx) = -sinx$$

$$\frac{d}{dx}(tanx) = sec^{2}x$$

$$\frac{d}{dx}(cotx) = -cosec^{2}x$$

$$\frac{d}{dx}(secx) = secx tanx$$

$$\frac{d}{dx}(cosecx) = -cosecx cotx$$

$$\frac{d}{dx}(constant) = 0$$

$$\frac{d}{dx}(constant) = 0$$

USES OF DIFFERENTIAL MATHEMATICS IN PHYSICS

Dependance of position and time

$$\vec{v} = \frac{d\vec{x}}{dt}$$

Here dx is called the first differential

co-efficient

$$\vec{a} = \frac{dv}{dt} = \frac{d^2\vec{x}}{dt^2}$$

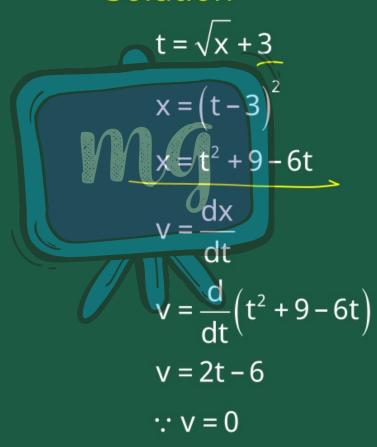
 $\int x = t-2$ $x = (t-2)^2$

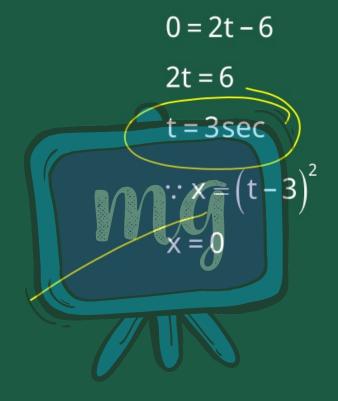
Example - 1

The displacement x (in meter) of a particles of mass 'm' (in kg) moving one dimension under the action of a force is related to time 't' (in sec) by $t = \sqrt{x} + 3$.

The displacement of the particle when it's velocity it zero will be?

Solution





$$V = \frac{dx}{dt}$$

$$V = 0 + 12 - 3t^2$$

Example - 2

The motion of a particle along a

$$V = \frac{12 - 3t^{2}}{3t^{2} = 12}$$

$$t^{2} = 4$$

$$(t = 28ec)$$

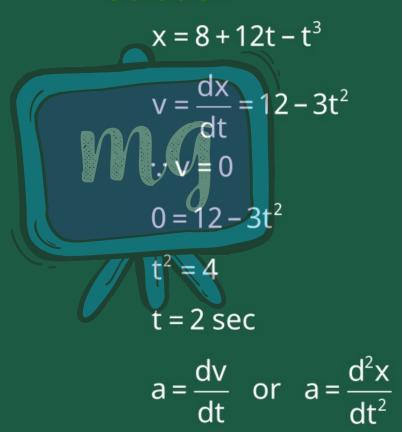
straight line is described by

equation $x = 8 + 12t - t^3$ where x in metre and t in second.

$$a = \frac{q_1}{q_1} = \frac{q_1}{q_1} \left(\frac{q_2}{15 - 3f_5} \right)$$

The retardation of the particle when it's velocity becomes zero is?

Solution



$$a = \frac{d}{dt}(12 - 3t^2)$$

$$a = -6t$$

$$\therefore t = 2sec$$

$$a = -12m / sec^2$$

The integration of a function f(x) with

respect to x is a function g(x), the differential co-efficient of which with respect to x is f(x).

$$\int f(d)dx = g(x)$$

This process to finding the integration of function f(x) is called integration.

Integration is the opposite process of differentiantion.



FORMULAE OF INTEGRATION

$$\int \int dx = (i) \int constant(dx) = constant(x)$$

$$\int \int dx = x^{n+1}$$

$$= \int \int x^{n+1} \int dx = \log_e x$$

$$= \int \int x^{n+1} \int dx = \log_e x$$

$$= \int \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

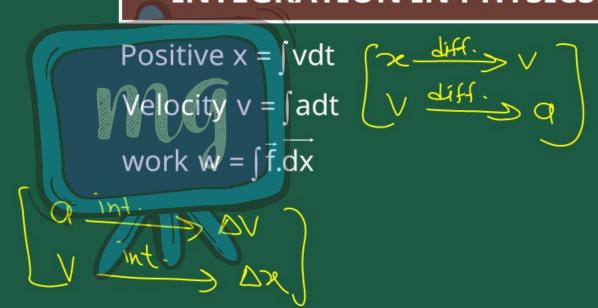
$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

$$\int \int dx = \int x^{n+1} \int dx = -\cos x$$

APPLICATION OF INTEGRATION IN PHYSICS



Example:

The velocity \vec{v} of a particle depends

upon time 't' as follows –

$$\vec{v} = 3t^2\hat{l} + 2t\hat{j} + 5\hat{k}$$

If this particle is located at origin at

$$t = 0$$
 then find its location at $t = 2$

Solution
$$x = 2t^{3} + 2t^{3} + 5t^{2} + 5t^{2}$$

Example:

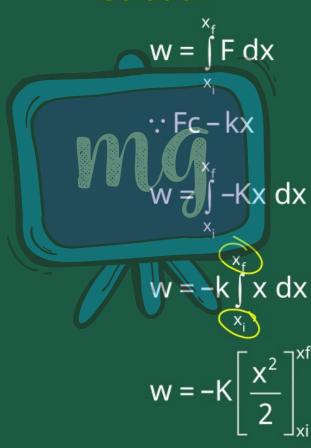
W= SFdR

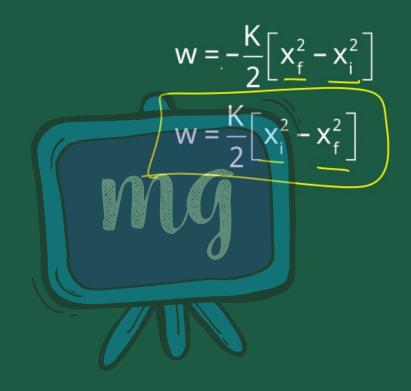
W= J-Kzd

W=-k<u>x</u>2

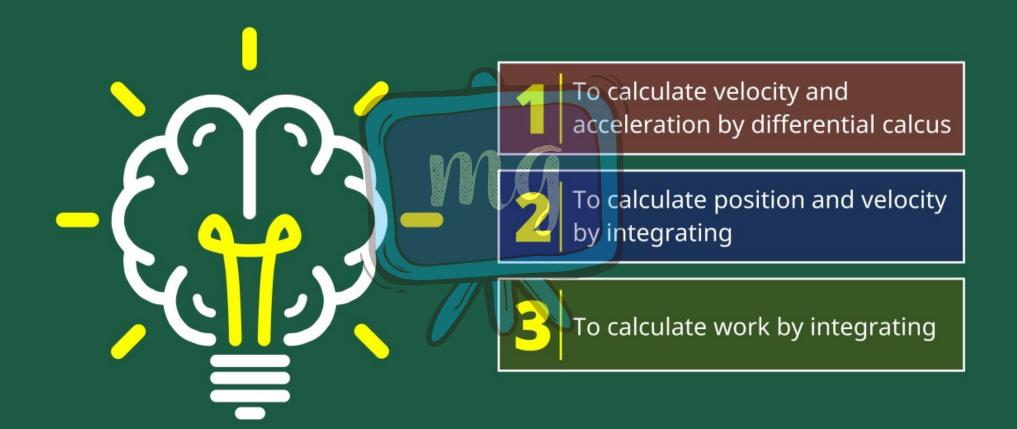
In one dimensional simple periodic motion force can be represented as kx, where k is force constant and x indicate displacement. Obtain the expression for work done by this force in displacement from initial position x_i to final position x_f .

Solution

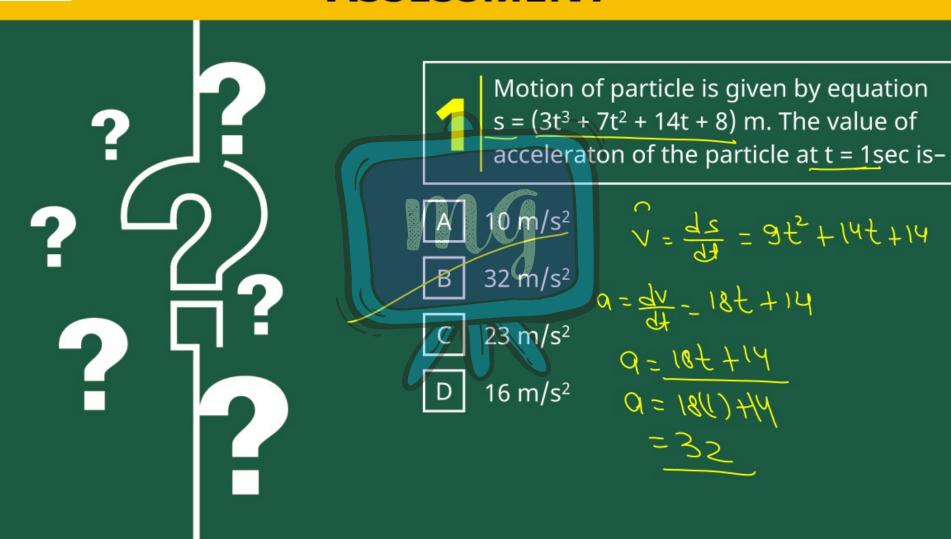




LEARNING OUTCOMES



ASSESSMENT



ASSESSMENT

