रोल नं. Roll No.

मुद्रित पृष्ठों की संख्या : 8

No. of printed pages: 8

428 (IGF)

128

2024 गणित

MATHEMATICS

समय : 3 घण्टे]

[पूर्णांक : 80

Time: 3 Hours]

Max. Marks: 80

निर्देश: (i) इस प्रश्न-पत्र में कुल 24 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।

Directions: There are in all 24 questions in this question paper. **All** questions are compulsory.

(ii) प्रश्नों हेतु निर्धारित अंक उनके सम्मुख अंकित हैं।

Marks alloted to the questions are mentioned against them.

(iii) प्रत्येक प्रश्न को ध्यानपूर्वक पढ़िये तथा समुचित उत्तर दीजिए। Read each question carefully and answer to the point.

- (iv) प्रश्न संख्या 1 बहुविकल्पीय प्रश्न है। इस प्रश्न के प्रत्येक खण्ड के उत्तर में चार विकल्प दिये गए हैं। सही विकल्प अपनी उत्तरपुस्तिका में लिखिए।

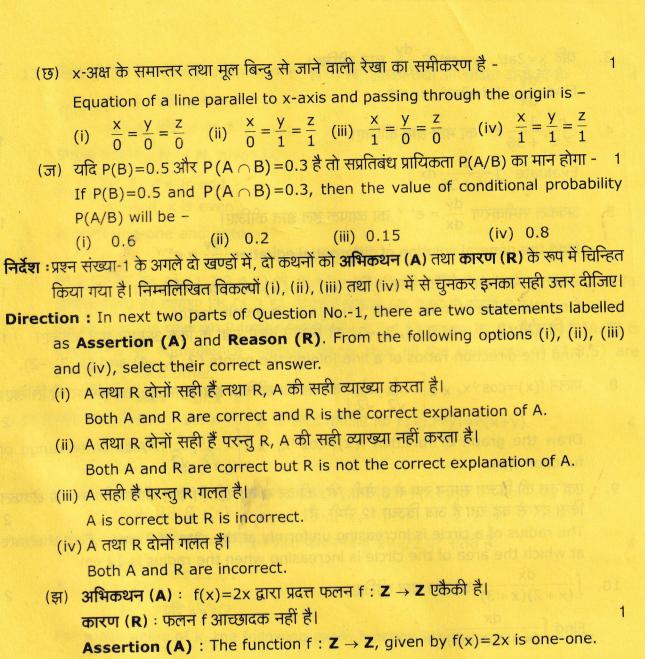
 Question No. 1 is multiple choice question. Four options are given in answer of each part of this question. Write correct option in your answer book.
- (v) प्रश्न संख्या 1 का प्रत्येक खण्ड **एक** अंक का है। प्रश्न संख्या 2 से 7 तक **एक** अंक के प्रश्न हैं। प्रश्न संख्या 8 से 12 तक **दो** अंक के प्रश्न हैं। प्रश्न संख्या 13 से 18 तक **चार** अंक के प्रश्न हैं। प्रश्न संख्या 19 से 24 तक **पाँच** अंक के प्रश्न हैं, जिसमें प्रश्न संख्या 24 केस/स्रोत आधारित प्रश्न है।

Each part of Question No. 1 carries **one** mark. Question No. 2 to 7 are of **one** mark each. Question No. 8 to 12 are of **two** marks each. Question No. 13 to 18 are of **four** marks each. Question No. 19 to 24 are of **five** marks each, in which question No. 24 is Case/Source based question.

(vi) इस प्रश्न-पत्र में समग्र पर कोई विकल्प नहीं है तथापि कतिपय प्रश्नों में आंतरिक विकल्प प्रदान किया गया है। ऐसे प्रश्नों में केवल एक विकल्प का ही उत्तर दीजिए।

There is no overall choice in this question paper, however, an internal choice has been provided in few questions. Attempt only one of the given choices in such questions.

1. (क)	यदि sin-1x=y हो तो-
	If sin-1x=y, then -
	(i) $0 \le y \le \pi$ (ii) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (iii) $0 < y < \pi$ (iv) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
(ख)	यदि A , 3×3 कोटि का एक व्युत्क्रमणीय वर्ग आव्यूह है, तो Adj A का मान है -
	Let A be a non-singular square matrix of order 3×3. Then Adj A is equal
	to-
	(i) $ A $ (ii) $ A ^2$ (iii) $ A ^3$ (iv) $3 A $
(ग)	'x' के सापेक्ष sin(cos(x²)) का अवकलज होगा-
No. of the	Differentiation of $sin(cos(x^2))$ with respect to 'x' will be -
	(i) $cos(cos(x^2))$ (ii) $cos(sin 2x)$
	(iii) $2x \cos(\sin(x^2))$ (iv) $-2x \cos(\cos x^2) \sin x^2$
(ঘ)	यदि $\frac{d}{dx}f(x) = 4x^3 - \frac{3}{x^4}$, जिसमें $f(2)=0$ तो $f(x)$ है-
	If $\frac{d}{dx}f(x) = 4x^3 - \frac{3}{x^4}$ such that $f(2) = 0$, then $f(x)$ is -
	(i) $x^4 + \frac{1}{x^3} - \frac{129}{8}$ (ii) $x^3 + \frac{1}{x^4} + \frac{129}{8}$ (iii) $x^4 - \frac{1}{x^3} + \frac{129}{8}$ (iv) $x^3 + \frac{1}{x^4} - \frac{129}{8}$
(ङ)	$\int \sqrt{1+x^2} \ dx$ बराबर है -
	$\int \sqrt{1+x^2} dx$ is equal to –
	$\times \sqrt{1 \cdot 2} \cdot 1 \cdot (\sqrt{2}) $
	(i) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log\left \left(x + \sqrt{1+x^2}\right)\right + c$
Avd ic	(ii) $\frac{2}{3}(1+x^2)^{3/2}+c$
The one	(iii) $\frac{2}{3} \times (1 + x^2)^{3/2} + c$
	iv) $\frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log\left \left(x+\sqrt{1+x^2}\right)\right + c$
(ਹ) ਰ	गर कोटि वाले किसी अवकल समीकरण के व्यापक हल में उपस्थित स्वेच्छ अचरों की संख्या है-
er salgjund	A THE PARTY PROPERTY OF THE PARTY OF THE PAR


The number of arbitrary constants in general solution of a differential equation of fourth order are -

(i)

(ii) 3

(iii) 2

(iv) 0

Reason (R) : Function f is not onto.
(ञ) अभिकथन (A) : बिन्दु $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ और $C(7\hat{i}-3\hat{k})$ संरेख हैं। कारण (R) : $|\overline{AC}| = |\overline{AB}| + |\overline{BC}|$.

Assertion (A) : Points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ and $C(7\hat{i}-3\hat{k})$ are

collinear.

Reason (R): $|\overline{AC}| = |\overline{AB}| + |\overline{BC}|$.

2. यदि y=A sin x+B cos x है तो सिद्ध कीजिए कि $\frac{d^2y}{dx^2} + y = 0$.

1

If y=A sin x+B cos x, then prove that $\frac{d^2y}{dx^2} + y = 0$.

3.	यदि $x=2at^2$, $y=at^4$ तो $\frac{dy}{dx}$ ज्ञात कीजिए। Find $\frac{dy}{dx}$, if $x=2at^2$, $y=at^4$
	Find $\frac{dy}{dx}$, if x=2at ² , y=at ⁴

 $\int \frac{1}{x^2 + 36} dx$ का मान ज्ञात कीजिए।

Evaluate $\int \frac{1}{x^2 + 36} dx$.

अवकल समीकरण $\frac{dy}{dx} = e^{x-y}$ का व्यापक हल ज्ञात कीजिए।

Find the general solution of differential equation $\frac{dy}{dx} = e^{x-y}$.

 \times का वह मान ज्ञात कीजिए जिसके लिए $\times(\hat{i}+\hat{j}+\hat{k})$ एक मात्रक सदिश है।

Find the value of x for which $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector.

दो बिन्दुओं (2, 3, -4) व (1, 3, -2) को मिलाने वाली रेखा के दिक-अनुपात ज्ञात कीजिए। Find the direction ratios of a line joining the points (2, 3, -4) and (1, 3, -2).

फलन $f(x)=\cos^{-1}x$, $x\in\left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]$ का आलेख खींचिए। इस फलन f(x) का परिसर भी लिखिए।

Draw the graph of function $f(x) = \cos^{-1}x$, $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$. Also write range of function f(x).

एक वृत्त की त्रिज्या समान रूप से 3 सेमी./से. की दर से बढ़ रही है। ज्ञात कीजिए कि वृत्त का क्षेत्रफल 9. किस दर से बढ़ रहा है जब त्रिज्या 12 सेमी. है।

The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 12 cm.

10. $\int \frac{dx}{(x+2)(x+3)}$ का मान ज्ञात कीजिए।

2

Find
$$\int \frac{dx}{(x+2)(x+3)}$$
.

11. निम्नलिखित रेखा-युग्मों के बीच का कोण ज्ञात कीजिए:

2

Find the angle between the following pair of lines:

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 317 / and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

12. एक यादच्छिक चर x का प्रायिकता बंटन नीचे दिया गया है। P (x<3) का मान ज्ञात कीजिए। A random variable x has the following probability distribution. Determine the value of P(x < 3).

X	0	1	2	3	4
P(x)	0	k	2k	4k	3k

13. सिद्ध कीजिए कि नीचे परिभाषित फलन $f: \mathbf{N} \to \mathbf{N}$, एकैकी तथा आच्छादक दोनों ही है:

$$f(x) = \begin{cases} x+1, & \text{यद} x \text{ विषम है} \\ x-1, & \text{यद} x \text{ सम है} \end{cases}$$

Show that $f: \mathbb{N} \to \mathbb{N}$, given by -

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$$

is both one-one and onto.

अथवा /OR

सिद्ध कीजिए कि $A=\{1,2,3,4,5\}$ में, $R=\{(a,b): |a-b|$ सम है $\}$ द्वारा प्रदत्त संबंध R एक तुल्यता संबंध है। दर्शाइए कि $\{1,3,5\}$ के सभी अवयव एक दूसरे से संबंधित हैं। Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a,b): |a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other.

14. यदि
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 है तो सिद्ध कीजिए कि $F(x).F(y) = F(x+y)$.

If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, show that $F(x).F(y) = F(x+y)$.

15. k के किस मान के लिए निम्नलिखित प्रदत्त फलन बिन्दु $x=\pi/2$ पर संतत है:

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{alg } x \neq \pi/2 \\ 3, & \text{alg } x = \pi/2 \end{cases}$$

For which value of k, the following given function is continuous at $x=\pi/2$:

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \pi/2\\ 3, & \text{if } x = \pi/2 \end{cases}$$

अथवा /OR

फलन x^{sin x}+(sin x)^{cos x} का 'x' के सापेक्ष अवकलन कीजिए।

Differentiate the function $x^{\sin x} + (\sin x)^{\cos x}$ with respect to 'x'.

16. समाकलन ज्ञात कीजिए:

Find the integral:

$$\int e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$$

अथवा /OR

428 (IGF)

[5]

P.T.O.

$$\int_0^{\pi} \log(1 + \cos x) dx$$
 का मान ज्ञात कीजिए।

Evaluate $\int_0^{\pi} \log(1 + \cos x) dx$.

- 17. सिंदिश $(\vec{a}+\vec{b})$ और $(\vec{a}-\vec{b})$ में से प्रत्येक के लंबवत मात्रक सिंदश ज्ञात कीजिए, जहाँ $\vec{a}=\hat{i}+\hat{j}+\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}+3\hat{k}$ हैं।

 Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}+3\hat{k}$.
- 18. बिन्दु (1, 2, -4) से जाने वाली और रेखाओं $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ और $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ में से प्रत्येक पर लम्ब रेखा का कार्तीय समीकरण ज्ञात कीजिए।

Find the cartesian equation of the line passing through the point (1, 2, -4) and perpendicular to each of the lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.

19. 4kg प्याज, 3kg गेहूँ और 2kg चावल का मूल्य ₹ 60 है। 2kg प्याज, 4kg गेहूँ और 6kg चावल का मूल्य ₹ 90 है। 6kg प्याज, 2kg गेहूँ और 3kg चावल का मूल्य ₹ 70 है। आव्यूह विधि द्वारा प्रत्येक का मूल्य प्रति kg ज्ञात कीजिए। 5
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹ 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹ 90. The cost of 6 kg onion, 2 kg wheat and 3kg rice is ₹ 70. Find cost of each item per kg by matrix method.

अथवा /OR

निम्नलिखित समीकरण निकाय को हल कीजिए:

Solve the following system of equations :

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$

$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

20. एक 28 सेमी. लम्बे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लम्बाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?

A wire of length 28 cm is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

अथवा /OR

एक वृत्त और एक वर्ग के परिमापों का योग p है, जहाँ p एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त के व्यास के बराबर है।

The sum of the perimeter of a circle and a square is p, where p is some constant. Prove that the sum of their areas is least when the side of square is equal to the diameter of the circle.

- 21. वक्र $x^2=4y$ एवं रेखा x=4y-2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए। 5 Find the area bounded by the curve $x^2=4y$ and the line x=4y-2.
- 22. निम्नलिखित अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए:

$$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$$
; y=0 यदि x=1

Find the particular solution satisfying the given conditions for the following differential equation :

$$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$$
; y=0 when x=1

अथवा /OR

किसी गाँव की जनसंख्या की वृद्धि की दर किसी भी समय उस गाँव के निवासियों की संख्या के समानुपाती है। यदि सन् 2009 में गाँव की जनसंख्या 16,000 थी और सन् 2014 में 20,000 थी, तो ज्ञात कीजिए कि सन् 2019 में गाँव की जनसंख्या क्या होगी?

The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 16,000 in 2009 and 20,000 in the year 2014, what will be the population of the village in 2019?

23. आलेखीय विधि द्वारा उद्देश्य फलन z=-50x+20y का न्यूनतम मान निम्नलिखित व्यवरोधों के अन्तर्गत ज्ञात कीजिएः

Determine graphically the minimum value of the objective function z=-50x+20y subject to the constraints :

$$2x - y \ge -5$$

 $3x + y \ge 3$
 $2x - 3y \le 12$

 $x, y \geq 0.$

24. एक कारखाना है, जिसमें एल ई डी बल्बों को उत्पादन किया जाता है। इस कारखाने में एल ई डी बल्ब बनाने हेतु तीन अलग-2 प्रकार की मशीनें A, B और C लगी हुई है। मशीनें A, B और C कुल उत्पादन का क्रमशः 25%, 35% और 40% एल ई डी बल्ब बनाती हैं। इनमें से कोई भी मशीन सौ फीसदी दक्ष नहीं है तथा मशीनों के उत्पादन का क्रमशः 5, 4 और 2 प्रतिशत बल्ब खराब (त्रुटिपूर्ण) हैं। उपरोक्त घटनाओं को निम्न प्रकार से परिभाषित किया जाता है:

L, : एल ई डी बल्ब मशीन A द्वारा बनाया गया है।

L, : एल ई डी बल्ब मशीन B द्वारा बनाया गया है।

L3: एल ई डी बल्ब मशीन C द्वारा बनाया गया है।

स्पष्ट है कि घटनाएं L_1 , L_2 तथा L_3 परस्पर अपवर्जी एवं परिपूर्ण है। यदि घटना 'E' को 'बल्ब खराब होने की घटना' से परिभाषित किया जाये तो उपरोक्त सूचनाओं के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिएः

- (i) बल्बों के कुल उत्पादन में से एक बल्ब यादृच्छया निकाला जाता है, तो उसके मशीन A द्वारा बनाये जाने की प्रायिकता क्या होगी?
- (ii) मशीन C द्वारा खराब बल्ब बनाये जाने की प्रायिकता क्या है?

(iii) बल्बों के कुल उत्पादन में से एक बल्ब यादृच्छया निकाला जाता है और यह खराब पाया जाता है। इसकी क्या प्रायिकता है कि यह बल्ब मशीन B द्वारा बनाया गया है?

There is a factory which manufactures LED bulbs. In this factory, three different type of machines A, B and C are installed for manufacturing LED bulbs. Machines A, B and C manufactures 25%, 35% and 40% of the total production respectively. Out of these no machine is hundred percent efficient and of their outputs 5, 4 and 2 percent are respectively defective bulbs. The above events are defined as follows:

 $L_{\rm i}$: The LED bulb is manufactured by machine A.

L₂: The LED bulb is manufactured by machine B.

 L_3 : The LED bulb is manufactured by machine C.

Clearly, L_1 , L_2 and L_3 events are mutually exclusive and exhaustive. If event 'E' is defined as the event of 'the bulb is defective', then based on the above information, answer the following questions:

- (i) A bulb is drawn at random from the total production, then what is the probability that it is manufactured by the machine A?
- (ii) What is the probability of manufacturing a defected bulb by machine C? 1
- (iii) A bulb is drawn at random from the total production and is found to be defective. What is the probability that it is manufactured by the machine B?

* * * * *