

Chapter-2 | Polynomials

Worksheet-1

Multiple Choice Questions

1. If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then —

(a)
$$a = 0$$
, $b = -6$

(b)
$$a = 5$$
, $b = -1$

(c)
$$a = -7$$
, $b = -1$

(d)
$$a = 2$$
, $b = -6$

A quadratic polynomial whose zeroes are 3 and - 2, is: 2.

(a)
$$x^2 + x + 6$$

(b)
$$x^2 - x - 6$$

(c)
$$2x^2 - x - 12$$

(d)
$$x^2 + x - 6$$

3. If α and β ($\alpha > \beta$) are the zeroes of the polynomial – x^2 + 8x + 9, then ($\alpha - \beta$) is equal to–

(a)
$$\pm 10$$

If the sum and the product of zeroes of a quadratic polynomial are $2\sqrt{3}$ and 3 4. respectively, then a quadratic polynomial is:

(a)
$$\left(x-\sqrt{3}\right)^2$$

(b)
$$x^2 + 2\sqrt{3x} + 3$$

(c)
$$x^2 + 2\sqrt{3}x - 3$$

(d)
$$x^2 - 2\sqrt{3}x - 3$$

5. If α and β are zeros of $x^2 + 5x + 8$, then the value of $(\alpha + \beta)$ is :

$$(a) - 8$$

(d)
$$-5$$

6. In the given figure, graph of a polynomial p(x) is given. Number of zeroes of p(x) is :

If one zero of the polynomial x^2 – 3kx + 4k be twice the other, then the value of k is : 7.

$$(a) - 2$$

$$(c) - 1/2$$

8. The zeros of the polynomial $x^2 - 2x - 3$ are

9. A quadratic polynomial, whose zeros are 5 and - 8 is —

(a)
$$x^2 + 4x - 3$$

(b)
$$x^2 + 3x - 40$$

(c)
$$x^2 + 13x - 40$$

(d)
$$x^2 - 3x - 40$$

10. The quadratic polynomial, the sum of whose zeroes is 5 and their product is 6, is:

(a)
$$x^2 + 5x + 6$$

(b)
$$x^2 - 5x - 6$$

(c)
$$-x^2 + 5x + 6$$

(d)
$$x^2 - 5x + 6$$

Fill in the blanks:

11. If $p(x) = x^2 + 4x - k$ and one zero of polynomial is -7 then value of k is ______.

12. A quadratic polynomial has _____ zeroes.

True / False

13. The degree of a constant polynomial is 0.

14. A polynomial of degree 3 can have at most 4 zeroes.

Very Short Type Questions

15. Find the zeroes of the polynomial $x^2 + 4x - 12$.

16. For a polynomial p(x), the graph of y = p(x) is given below. Find the number of zeroes of

p(x).

Short Type Questions

17. Sum and product of zeroes of quadratic polynomial are 5 and 17 respectively. Find the polynomial.

18. If the sum of the zeroes of the quadratic polynomial $p(y) = (ky)^2 + 2y - 3k$ is equal to twice their product, find the value of k.

Essay Type Questions

19. Find the zeroes of quadratic polynomial $4u^2 + 8u$ and verify the relationship between the zeroes and their coefficients.

20. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - 2x + 3$, find a polynomial whose roots are α + 2, β + 2.

21. If α and β are the zeroes of polynomial $p(x) = 3x^2 + 2x + 1$, find the polynomial whose zeroes are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.

1006 FREE

Video COURSES | QUIZ | PDF | TEST SERIES

CBSE

CLASS-10 | MATHEMATICS

Chapter-2 | Polynomials

Worksheet-1

Answer

1. (a)
$$a = 0$$
 $b = -6$

2. (b)
$$x^2 - x - 6$$

4. (a)
$$x^2 - \sqrt{3}$$

9. (b)
$$x^2 + 3x - 40$$

10. (a)
$$x^2 + 5x + 6$$

11.
$$k = 21$$

- **12.** 2
- **13.** True
- **14.** False

15.
$$p(x) = x^2 + 4x - 12$$

Zeroes of the polynomial are - 6 and 2

16. The number of zeroes is 4 as the graph given in the question intersects the x-axis at 4 points.

Quadratic polynomial =
$$x^2 - 5x + 17$$

18.
$$p(y) = (ky)^2 + 2y - 3k$$

$$k = \frac{1}{3}$$

20. Given polynomial is
$$f(x) = x^2 - 2x + 3$$

$$x^2 - 6x + 11$$

21. Since α and β are the zeroes of polynomial $3x^2 + 2x + 1$.

$$x^2 - 2x + 3$$